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Abstract—Software processes, together with software quality
assurance, focus on ensuring and attesting that the engineering
processes result in the appropriate software quality. Complex
processes and regulations (e.g., in safety-critical systems), time
pressure, or coordination needs, often cause engineers to deviate
from prescribed processes, producing a cascade of inconsistencies
whose repair is typically troublesome. Accordingly, guidance is
needed to help engineers to fix the inconsistencies and understand
the implications of postponing inconsistency resolution until engi-
neers reach a consensual agreement of the most convenient repair.
To this end, we bring together techniques and methods from
process engineering, model inconsistency checking, and formal
methods. Preliminary evaluations with real industry data have
demonstrated the ability of our early prototype to track process
inconsistencies across time and the potential for automated repair.

Index Terms—software engineering process, inconsistency, de-
veloper guidance, repair, constraints

I. INTRODUCTION

Software processes together with software Quality Assur-
ance (QA) focus on ensuring and attesting that the engineering
processes result in the appropriate software quality. In safety-
critical domains, various regulations, standards, and guidelines
stipulate stringent traceability paths [1], but do not prescribe
the corresponding detailed software engineering process. Re-
search as early as the 90s identified rigid, active process
enactment as detrimental to engineers’ flexibility. Indeed, the
current practice in industry is using semi-formal descriptions
to specify processes [2], rather than rigidly enforced processes.
Informal studies at our industry partners have revealed that
engineers deviate temporarily from the intended process. Thus,
there exists a tension between the need to follow regulations
and the process on the one hand, and the need to be able to
deviate on the other hand.

As regulations and processes are complex and potentially
different for each project, it becomes infeasible for QA engi-
neers to manually track deviations and guide engineers back
in a timely manner. The problem is then how to provide
automated process guidance to engineers in the presence of
violated process and quality constraints.

This is non-trivial as a process deviation typically affects
not only a single engineer but has impact on other engineers
as well. Without awareness of process deviation and its impact
on others, a deviation may go unnoticed or not be completely

Ruben Heradio, David Fernandez-Amoros
Universidad Nacional de Educacion a Distancia
Madrid, Spain
rheradio|david @issi.uned.es

corrected. Inconsistencies then may propagate to subsequent
process steps and their engineering artifacts, ultimately leading
to costly rework at a later time or lower software quality.

We argue that guidance needs to come in two forms.
First, supporting engineers in determining which activities are
needed to return to a consistent process state, and second,
identifying what are the affected process steps and their re-
sponsible engineers. The latter aspect is especially important as
inconsistencies may not be fixable immediately. For example,
a consensual agreement among the implicated engineers on
the best repair alternative may not have been achieved yet.
A guidance mechanism will then notify other engineers about
the extent to which their work is affected by an inconsistency
and thus might incur rework in case they continue. The
same mechanism can be employed for what-if scenarios, e.g.,
helping to estimate the impact of starting a step too early.

This paper takes our current inconsistency-tolerating process
engine [3] as a basis. This engine signals any deviation
from the process without enforcing its immediate correction.
However, it neither estimates the deviation impact nor assists
engineers to fix it. To overcome these limitations and support
the repair delay when needed, we propose to encode the
process instance as a Boolean formula that is then examined
with formal method techniques to identify and isolate the
affected process steps and artifacts. Our new approach aggre-
gates multiple repair templates that suggest localized fixes into
repair plans, which are checked for their overall consistency,
and then presented to the engineer for enactment.

Ultimately we expect such guidance to reduce the time in
an inconsistent state, and thus the potential for unintended
inconsistency propagation, which in turn reduces the amount
of errors and subsequent rework that cascades beyond an initial
deviation.

A preliminary evaluation with real process instances at our
industry partner has demonstrated our prototype’s basic ability
to detect when process deviations occur and when they are
(manually) fixed, thereby highlighting the significant duration
process steps remain in an inconsistent state.

II. MOTIVATING EXAMPLE

Our industry partner ACME-ATC (anonymized) is a world-
leading voice communication provider for air-traffic control
and command-control centers.
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Engineers are organized in teams dedicated to specific sub-
systems. Engineers’ tasks are arranged into work packages and
Sub-Work Packages (SubWPs). Figure 1 shows the process
ACME-ATC enforces to accomplish a SubWP, starting with
High-Level Requirements (HLReq) and design Specifications
(HLSpec), and concluding with the requirement implementa-
tion and the successful execution of the corresponding test
cases. Once that HLReq and HLSpec are reviewed, HLReq
is refined into Low-Level Requirements (LLReq), causing
updates to the Low-Level design Specifications (LLSpec). The
implementation starts after the trace links between HLReq and
LLReq, and between LLReq and LLSpec are reviewed.

Even in this straightforward process, multiple deviations
may occur. For example, when HLReq and HLSpec reviewing
(S1) is taking more time than expected, engineers may decide
to prematurely start refining HLReq into LLReq (S2) before
the review results are completed to gain time. Afterwards,
the set of engineers responsible for updating the design
definitions (S3) start working on LLReq, ignoring that they
are incomplete. Suppose that a review (S1) highlights some
shortcomings of HLReq, which cascade to LLReq (S2) and
thus onto design decisions (S3). Such an impact propagation
across multiple engineers or even teams may occur with a
delay (potentially requiring rework in S2 and S3) or may not
occur at all (potentially leading to bugs).

Feedback between process steps also may lead to inconsis-
tencies. For example, imagine that engineers detect ambiguity
in HLReq when they are updating LLSpec (S3). As a result,
S1 and S2 artifacts need to be partially reworked with further
impact in already started ulterior steps.

Such a simplified process and artifact structure already
comes with a large number of control and data-flow depen-
dencies. Obtaining an accurate set of affected artifacts, process
steps, and their responsible engineers, is therefore vital to
quickly identify who needs to coordinate in order to handle a
process deviation (i.e., who should fix what and when).

III. APPROACH

Our approach consists of four main elements depicted in
Figure 2. An inconsistency-tolerating Passive Process Engine
compares the engineering activities with a prescribed process
by analyzing changes in the artifacts (A). An Incremental
Deviation Checker analyzes the process state and artifact
changes (B) to highlight the violations that may have occurred.
The detected deviations are made available via the Process
Dashboard (C). Additionally, a Boolean formula encoding the
process instance is passed to the Impact Scope Identification
(D) for determining the inconsistency causes and then comput-
ing the affected steps and artifacts. This scope alerts engineers
on what steps and artifacts may be subject to rework due to
the process deviation (E). Also, the inconsistency causes are
matched with Repair Templates in the Repair Recommender
(F) for guiding engineers (G) to bring steps and artifacts back
in line with process specifications and other (safety-related)
regulations (H).

Artifacts Process Steps
HL Design S1] HLReq and
Specification |- ""'""':[HLépec Rgview
Requirement {=. [$2] HLReg
— - | Refinement into
R - LLReq
LL ' '
Requirement |
L [S3] LLSpec
Update
<L Design /\
pecification : =5~ [ [85] LLReq to
b e T [fﬂQS!‘Sreq Il e LLSpec Trace
qirace Review
Review

S6;
s & Implelr:negllat\on

P *

- [ST]LLReq to
Test Case .| TestCase
Coverage
Review

Fig. 1: Motivating scenario: ACME-ATC’s simplified process
model excerpt depicting a selection of artifacts (left) that are
input to and output from (dashed lines: data flow) process steps
(right, full lines: control flow).

A. Inconsistency-tolerating Process Execution

The initial version of our Passive Process Engine [3]
tolerated limited deviations, such as violations of artifacts
quality and traceability constraints. This paper presents a new
version that also deals with deviations from the process step
sequences. For example, when a step starts prematurely, or
when some step output artifacts are updated after it is already
marked as completed.

Artifact changes are used to trigger step progress (e.g.,
modifications on requirement status, new bug assignee, etc.),
and decision nodes between steps (not shown in any Figures)
are employed for synchronization purposes (e.g., for observing
whether S4 and S5 in Figure 1 are completed before marking
S6 as Enabled). The state diagram in Figure 3 depicts the
correct transitions a step may have, together with its possible
deviations. Accordingly, a premature start would happen when
the step passes directly from Available to Active.

B. Incremental Deviation Checking

Engineering processes for safety-critical systems involve
a plethora of diverse engineering artifacts where changes in
one artifact affect the consistency of other artifacts. In a
preliminary investigation at our industry partner, we studied
>100 process instances that involved around 14,000 inter-
twined artifacts. Accordingly, a highly scalable inconsistency-
checking mechanism is needed.

Our approach satisfies this demanded scalability by splitting
any process or artifact modifications into atomic changes.
Then, the Incremental Deviation Checker incrementally exam-
ines the atomic changes, focusing exclusively on the process
model areas affected by the changes. For example, as the status
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property of a HL. Requirement changes, only the constraints in
tasks S1, S2, or S3 that make indeed use of that property need
to be re-evaluated rather than all constraints in the process.

C. Inconsistency Isolation

We use a Boolean logic engine to compute the correspond-
ing impact scope. For example, when the change of a HL
Requirement status property leads to a constraint violation,
we identify which other constraints make use of any of this
artifact’s properties and potentially flag these constraints as
impacted. To calculate this scope, Impact Scope Identification
first encodes the process model as a Boolean formula using
a procedure similar to Kuhlmann et al’s [4] translation of
UML/OCL models into Boolean logic. Identifying the root
of an inconsistency and its potential fixes is then a matter
of identifying Minimal Unsatisfiable Sets (MUSes) and Min-
imal Correction Sets (MCSes), respectively [5]. A MUS is
a subset of the formula constraints that is both unsatisfiable
and cannot be made smaller without becoming satisfiable. A
MCS is a subset of the constraints, whose removal makes the
formula satisfiable and cannot be made smaller without losing
its correcting capability. The inconsistency low-level impact
boundary is determined from the union of all MUSes [6],
which is then translated back into properties of the process
and/or artifacts.

MUSes are typically computed by repeatedly calling a SAT-
solver [5], [7]. Although our engine currently follows this pro-
cedure, we plan to explore alternative knowledge compilation
techniques for achieving higher scalability, such as Binary De-
cision Diagrams (BDDs) [8] or Sentential Decision Diagrams
(SDDs) [9]. In this regard, we have already demonstrated the
efficient synthesis of BDDs even for very large engineering
models [10].

D. Inconsistency Repair Generation

The Repair Recommender component supports repairs at the
process level (e.g., repeating a step, waiting for a step, undoing
step changes, etc.) and at the artifact level (e.g., modifying a
property value, creating properties, establishing traces, etc.).
Repair trees consist of repair instances, which range from fine-
granular fixes (e.g., suggesting specific values or aborting a
step) to coarse-granular recommendations (e.g., switching to
another process step or creating a new artifact). Our repair
component is extensible, thus supporting repairs tailored to
different artifacts; currently it produces recommendations for
UML/OCL models. In the HL requirement status property
example: one possible repair tree would suggest to (i) set the
property to a valid value and (ii) to postpone execution of Step
S4, respectively, if already executed, to repeat it.

1Vv.

At the current stage, our prototype [11] detects deviations
from the process sequence, e.g., if a step has started before
the previous one is completed or its quality constraints are
fulfilled. We applied the prototype to the change history [12]
of 109 complete SubWP processes, involving multiple artifacts
from our industry partner. A SubWP roughly corresponds to
steps S2, S3, S6, and S7 in Figure 1, with each step involving
up to four quality constraints that check properties and traces
among requirements, design specs, and test cases.

Table 1 details in how many process instances a step was
subject to a preceding step starting too early (due to still being
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INCOMPLETE or due to having QA UNFULFILLED). Row
two, for example, reports that in 13 process instances, step
S2 had quality constraints unfulfilled when S3 or S6 or S7
started. In 10 instances, S2’s quality constraints were repaired
after 1,075 hours on average.

Two aspects draw attention: first, the long average duration
until the inconsistencies were fixed, mostly due to coordi-
nation needs (as determined by manual process inspection
and interviews with QA engineers), but also because the
kind of automated guidance this paper proposes was not
available. Second, no Sx_INCOMPLETE inconsistencies were
ever repaired. The inspection of these cases revealed that
engineers simply forgot to fill out specific checkboxes in the
JIRA ticket used for manual progress tracking. This is another
excellent example of the potential inconsistency isolation and
repair support envisioned: informing the engineer that the
checkbox could be one of the reasons the process step is in an
inconsistent state and provide a simple automated repair. At
the same time, the prototype would also identify the artifacts
involved in the previous step to inform the engineer what
changes to expect if the previous step is indeed not completed
yet.

All Fixed Open Avg.Dur. (hours)

S2_INCOMPLETE 8 0 8 -
S2_QA_UNFULFILLED 13 10 3 1,075
S3_INCOMPLETE 8 0 8 -
S3_QA_UNFULFILLED 38 34 4 1,124
S6_STEP_INCOMPLETE 9 0 9 -
S6_QA_UNFULFILLED 14 10 4 2,085
S7_INCOMPLETE 0 0 0 -
S7_QA_UNFULFILLED 0 0 0 -

TABLE I: Preliminary evaluation: amount and duration of two
types of high-level process inconsistencies due to prematurely
starting steps.

V. RELATED WORK

Most related work focuses on formally verifying processes
[13] rather than attempting to fix them. Fixing is limited
to achieving sound process models but is not applicable
to instances as we aim for. The few, recent approaches
that address inconsistencies and their repair exhibit limited
expressiveness for specifying constraints: LTL for express-
ing task and event constraints [14], [15] or Mixed-Integer
Programming for determining runtime compliance of task
and resource allocation [16]. However, software engineering
processes are artifact intensive (e.g., requirements, models, and
code) and collaboration intensive. Other related work includes
Maggi et al. [14], which detects inconsistencies by checking
events against a separate local finite-state automaton for each
constraint. A violation then results in ignoring, resetting, or
disabling that automaton but not in an actual repair. Kumar
et al. [16] calculate repair plans but do not address continued
reasoning support in the presence of inconsistencies. VanBeest
et al. [17] apply Al-centric planning for process repair. Their
approach then generates a single repair plan for automatic
execution immediately after detecting an inconsistency.

Research in the 90s resulted in a number of approaches.
Step-centric modeling and active execution frameworks [18]-
[22] determine which steps may be done at any given mo-
ment, automatically executing them where possible. While
such research supports detailed guidance, deviations from the
prescribed process are not well supported. In contrast, systems
utilizing ECA rules or pre- and post-conditions [23], [24]
provide significant freedom of action to the engineer but offer
limited guidance.

Our approach relies on detecting inconsistencies so as to
be able to propose repairs for violations in the execution of
processes. Most recent work (e.g., [25]-[30]) allows checking
consistency of models from arbitrary pre-defined meta-models,
which enables us to adapt their techniques for our process
consistency checking. However, they do not provide full
repair strategies for resolving detected inconsistencies, i.e., the
actions (and their order) available to an engineer to return to
a consistent state when a process is violated.

Providing repairs for inconsistencies in models is an active
field of research and is used for re-establishing process confor-
mance in our approach. Taentzer et al. [31] proposed to repair
inconsistent models w.r.t. their metamodels. They relied on the
model change history, thus reducing the amount of possible
repairs. Similarly, Ohrndorf et al. [32] use an initial change
to propose repairs for arising inconsistencies. Puissant et al.
[33] proposed a planning technique to generate repair plans for
inconsistencies while aiming at a fast computation of repairs
without assessing the relevance of the repair plans. Kretschmer
et al. [34] provide a technique for obtaining repairs based on
elements already present in the model and values obtained
with the help of generator functions.

Work by Nohrer et al. [6], [35] is one of the few attempts to
isolate inconsistencies to support correct reasoning on models.
Their approach, however, does not ensure correct reasoning:
there may be choices outside of the union of all MUSes
affected by the inconsistency; if engineers make decisions
about those choices, they will have to review them when
the inconsistency is fixed in the future. Furthermore, MUSes
union is computed by repeatedly calling a SAT-solver, which
is computationally very expensive and does not scale for large
models [5], [7].

This brief overview of related approaches shows how the
needed models, techniques, and algorithms for inconsistency-
tolerating process guidance are spread over —so far— rather
disjoint research communities: software processes, model in-
consistency checking, and formal methods.

VI. CONCLUSION

We have presented an approach for supporting engineers to
deviate from processes and guide them back to a consistent
state. Preliminary results have shown our prototype’s ability
to detect deviations in a process control flow and its involved
artifacts. The evaluation has shown that, in practice, process
deviations are rarely fixed immediately. This fact motivates
inconsistency tolerating tools as well as guidance mechanisms.
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Consequently, our next steps will focus on isolating inconsis-
tencies to prevent engineers’ rework when deviation fixing is
postponed, and ultimately determining repair plans.
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